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Abstract. A remarkable product formula first derived by Palmer and Tracy (1981Adv. Appl. Math.
2 329) for the integrand of the two-dimensional Ising model susceptibility expansion coefficients
χ(2n) for temperaturesT less than the criticalTc is shown to apply equally forχ(2n+1) for T > Tc
and agrees with formulae derived by Yamada (1984Prog. Theor. Phys.71 1416). This new
representation simplifies the derivation of the results in the original paper of this title (1999J.
Phys. A: Math. Gen.32 3889) to the extent that the leading series behaviour and the singularity
structure can be deduced almost by inspection. The derivation of series is also simplified and I show,
using extended series and knowledge of the singularity structure, that there is now unambiguous
evidence for correction to scaling terms in the susceptibility beyond those inferred from a nonlinear
scaling field analysis.

1. Introduction

In a recent paper, hereafter referred to as I [1], I reduced the exact formal integral expressions
for the dispersion series coefficientsχ(2n+1) of the high-temperature,T > Tc, susceptibility of
the two-dimensional (2D) square lattice Ising model [2] to the point where one could make
definitive statements about both the leading-order series behaviour in the ‘temperature’ variable
s = sinh(2K) and the singularity structure as a function of complexs. The conclusion,
supported by some series analysis, was that the unit circle|s| = 1 is very likely to be a
natural boundary for the susceptibilityχ+. I subsequently became aware of a truly remarkable
simplification by Palmer and Tracy [3] for the susceptibilityχ− in the low-temperature ordered
phaseT < Tc or equivalentlys > 1. These authors have shown that a Pfaffian, which is the
most difficult factor in theχ(2n) integrals to evaluate, in fact, reduces to a simple product form.
There is no immediately obvious relation to the corresponding factor inχ(2n+1) in the disordered
phase which first, is a sum of Pfaffians and second, has elements that are different from those
in the Pfaffians in the low-temperature phase. Surprisingly, however, the high-temperature
factor reduces to thesame product formand the proof of this is given in section 3.

Essentially the same formal expressions, albeit given in terms of Jacobi elliptic functions
rather than in a trigonometric/hyperbolic representation, has been reported by Yamada [4]
with details of the derivation appearing in a sequence of papers culminating in [5]. The latter
reference includes an important appendix that shows how product formulae arise as a general
property of certain determinants of elliptic functions. To assist the reader in verifying the
equality of the Yamada results with those given here I have collected a short dictionary of
mappings, for the most part taken from Yamada [6] and Onsager [7], in appendix C. The fact
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that the formal results obtained by different methods agree and are consistent with (known)
low-order series is strong evidence in favour of their correctness.

Since the susceptibilities,χ±, in the two phases are identical in form, the results reported in
I for T > Tc can be directly transcribed to coverT < Tc. In particular, there is a corresponding
infinity of singularities inχ−, on the circle|s| = 1, which is the analytic continuation from real
T < Tc, except that these are now branch points of half-integer order rather than logarithmic. A
summary of final results including high- and low-temperature comparisons is given in section 2.

Perhaps more important from a practical point of view is the fact that the product
representation for the integrands inχ(N) simplifies the analysis in I dramatically. Series longer
by about 30 terms can be obtained with comparable effort and in appendix A I supplement
the coefficients given in I to yield complete series to O(s117) and O(s−116) for the high- and
low-temperature cases. Both the long length of the series and knowledge of the singularity
structure ofχ± in the complex-s-plane are crucial to enable the simple analysis I present in
section 4. I find that corrections to scaling beyond those predicted by the Aharony–Fisher
nonlinear scaling field analysis [8] must be present in the ferromagnetic susceptibility. The
results are consistent with the leading non-trivial corrections being (amplitude) modifications
of existing terms of the form|t |9/4 or t2 ln |t | wheret = T/Tc − 1. However, to confidently
decide between these possibilities or show that they have not been confused with other nearby
power-law terms will, at the very least, require more detailed analysis, possibly similar to that
performed by Gartenhaus and McCullough on shorter series [9].

Any future series analysis would be facilitated if one knew in advance what kind of
corrections to scaling to expect. Barma and Fisher [10] report numerical evidence, on Ising-
like systems with a modified spin distribution, for a correction to a scaling exponentθ = 4

3
consistent with a conjecture by Nienhuis [11]. This correction vanishes as the Ising limit is
approached; however, Barma and Fisher point out that if the correction couples at third order to
a critical operator then correctionst4 ln |t | in the scaling field (yielding corrections|t |9/4 ln |t |
toχ ) are to be expected. Sokal [12] has suggested that an operator associated with the breaking
of rotational invariance might, at second order, contribute at the same level. Whether the series
derived in this paper are consistent with such a generalized scaling field approach remains an
open question. To disentangle|t |9/4 ln |t |, |t |9/4 andt2 ln |t | contributions numerically will be
very difficult even with more sophisticated analyses and may in the end require even longer
series.

Both the virtue and fault of dealing with the pure Ising model is that there are no parameters
coupled to irrelevant variables to vary. A possibly more sensible alternative is to introduce
such variables as perturbations; the calculation ofχ will then require the evaluation ofn-point
functions withn > 2. Such calculations as series to the necessary high order ins or s−1 would
not be trivial but if the simplifications described in this paper forχ generalize to thesen-point
functions then they are not out of the question.

2. Analytical summary

A summary of the results for the susceptibility is as follows. Letχ̂ (N) be reduced expansion
coefficients related toχ(N) from [2] by

β−1χ± =



∞∑
n=0

χ(2n+1) = (1− s4)1/4s−1
∞∑
n=0

χ̂ (2n+1) s < 1

∞∑
n=1

χ(2n) = (1− s−4)1/4
∞∑
n=1

χ̂ (2n) s > 1.

(1)
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Then (equations in the current text that are the same as, or closely related to, equations in I
will also be designated by (I.xx))

χ̂ (N) = 1

N !

(N−1∏
m=1

∫
dφm
2π

)( N∏
m=1

ym

)
(G(N){hij })2

(
1 +

N∏
m=1

xm

)/(
1−

N∏
m=1

xm

)
(2, I.3)

where the constraint
∑N

m=1 φm = 0 mod 2π is understood and†

x−1
m = s + s−1− cosφm + ((s + s−1− cosφm)

2 − 1)1/2 = exp(γm)

y−1
m = ((s + s−1− cosφm)

2 − 1)1/2 = sinh(γm).
(3, I.4)

The generatorG(N) is unity forN = 1 and otherwise

G(N) =
( N∏
m=1

xm

)(N−1)/2 ∏
16i<j6N

(2 sin 1
2(φi − φj )/(1− xixj )) =

∏
16i<j6N

hij

hij = sin 1
2(φi − φj )/ sinh 1

2(γi + γj ) = sinh 1
2(γi − γj )/ sin 1

2(φi + φj )

(4)

where the equality of the two forms forhij can be verified using the identity coshγm =
1
2(xm + x−1

m ) = s + s−1 − cosφm that follows from the defining equations (3). The product
formula (4) for the generator forN even ands > 1 was obtained by Palmer and Tracy [3];
Yamada [4] independently derived it for alls. The equivalence of the product formula to the
antisymmetric sum,

G(2n+1) =
∑
P

δPP

( n∏
m=1

f2m−1,2m

)
/(2nn!) =

2n+1∑
1

Pf{fij } (5, I.7)

with

fij = 1
2(sinφi − sinφj )(1 +xixj )/(1− xixj ) = cos1

2(φi + φj ) cosh1
2(γi + γj )hij (6, I.4)

for N = 2n + 1 odd ands < 1, given in I will be proved in the following section. The second
equality in (5) is a schematic reminder that, as described in I, the permutation sum is over 2n+1
indices so thatG(2n+1) can be expressed as an appropriately signed sum of 2n + 1 Pfaffians
Pf{fij } of order 2n.

Nappi [13] derived the scaling limit of the antisymmetric sum (5), and the corresponding
Pfaffian expressionG(2n) = Pf{hij } for s > 1, starting from Wuet al’s [2] formulae by a
combinatorial route which is essentially that given in I. In fact, since the proof is combinatorial,
the reduction first to the scaling limit is not necessary and the results of [13] are general. That
(5) might further be reduced to a product form is made plausible by Palmer and Tracy’s result
([3], equation (5.20)) that this happens in the scaling limit and indeed Yamada [4] has given
such a formula.

Yamada’s work [4–6] is a generalization of the spectral approach of Yang [14] and
his expressions for the zero-field susceptibility are formally identical to equations (1)–(4).
Yamada’s formulae (equations (19)–(26) in [4]) are in terms of the Jacobi elliptic functions
which are useful for simplifying the integral equation that must be solved in this method,
but their transcription to trigonometric/hyperbolic form is easily obtained using the list of
elliptic function identities given in appendix C. For numerical work the elliptic representation
is probably not useful; as an example, the lattice sum over phases that leads to the trivial
constraint

∑N
m=1 φm = 0 mod 2π in the trigonometric representation results instead in a very

complicated implicit function constraint on the elliptic variables.

† The definition ofym here differs from that in I by a factor ofs to enable a parallel treatment of high and low
temperatures.
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Abraham (cf [15] and references therein) has also tackled the problem of Ising model
correlations by spectral analysis but via a generalization of the fermionic approach of Schultz
et al [16]. The Pfaffian-like structure of the generatorsG(N) arises naturally and the method
appears to have an advantage in that it eliminates the combinatorial complexity of Wuet al’s
[2] approach. However, no method is algebraically trivial and the reader is advised to treat
Abraham’s formulae with caution. In the case of pair correlations at high temperature I find
empirically thatu(r) (equations (18)–(27) in [15]) must be corrected by division by sinh2(K).
A comparison of the correctG(N) given here with corresponding formulae derived by Abraham
is given in appendix B.

For practical computational purposes the most remarkable and useful of the results reported
in the literature are the product formulae. An example is Palmer and Tracy’s [3] equation (5.8)
which, as the second equality in

G(2n) = Pf{hij } =
∏

16i<j62n

hij (7)

expresses the Pfaffian as a product of its elements. Withhij written in the
trigonometric/hyperbolic form in equation (4), the result (7) is quite mysterious and indeed the
proof [3] required showing that the Pfaffian and product are both elliptic functions and have
the same periodicity and singularity structure. Yamada’s proof [6] of a product representation
for G(2n+1) also relies in an essential way on properties of the Jacobi elliptic functions. Such
knowledge is not required for the proof given in section 3 where I start from Palmer and
Tracy’s result (7) and proceed entirely by algebraic manipulation. The convergence of different
methods to the same final result (1)–(4) is important for confirming its validity.

I conclude this section with a short digression on the implications of the product
representation ofG(N). First, the product formula (4) makes the leading-series behaviour
of χ̂ (N) immediately obvious. Sinceym ' s (or s−1) andxm ' ym/2 for smalls (or s−1),
depending on whether the temperature is above (or below)Tc, the leading term in̂χ(N) is

χ̂ (N) ' (s (or s−1))N
2
/2N(N−1)AN (8, I.8)

by inspection of equations (2)–(4) withAN the integral

AN = 1

N !

(N−1∏
m=1

∫
dφm
2π

)∣∣∣∣ ∏
16i<j6N

2 sin 1
2(φi − φj )

∣∣∣∣2 = 1. (9)

ThatAN = 1 can be seen by noting that the product over sine functions is, except for an
overall phase, a product over the differences exp(iφi) − exp(iφj ) and thus a Vandermonde
determinant in the variables exp(iφi). This determinant in turn is the sum ofN ! terms of the
form ± exp(i

∑N−1
m=1 φm(nm − nN)) with ni an integer. All cross terms in the product of the

determinant with its complex conjugate will vanish when integrated because theni do not
match; only theN ! diagonal terms will survive, each with an integral value of unity.

Secondly, the determination of singularity amplitudes forT > Tc (or T < Tc) at

skl (or s−1
kl ) = exp(iθkl) 2 cos(θkl) = cos(φ(k)) + cos(φ(l))

φ(k) = 2πk/N φ(l) = 2πl/N
(10, I.12)

proceeds formally exactly as in I except that the hard part of determining the constantB
(N)
kl N !

to be 1/(2 sin(φ(l)))N(N−1) from its defining equation

(G(N){hij })2/N ! ' iN(N−1)B
(N)
kl

∏
16i<j6N

(δi − δj )2 (11, I.39)
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now follows trivially by inspection of equation (4) withγm ' −iφ(l) and the deviation
δm = φm − φ(k). There is a technical distinction between high and low temperatures that
must be observed in the actual evaluation of the integrals; power counting shows that for
T < Tc the |s| = 1 singularities are branch points of half-integer order. Specifically, let the
deviationε for T < Tc be defined bys−1 = s−1

kl (1− ε). Then the singular part of̂χ(N) is†

χ̂
(N)
kl ' (iεN sin(θkl))

(N2−3)/2

(N−1∏
m=1

(m!/2m)

)/
(π(N−3)/20( 1

2(N
2 − 1))

√
N)

×(sin2(φ(l)) cos(φ(k)) + sin2(φ(k)) cos(φ(l)))−(N
2−1)/2 N even. (12)

The phases in equation (12) are given for 0< θkl < π/2; elsewhere they can be inferred by
invoking reality and invariance unders−1→−s−1.

3. Proof of the product representation

I now outline the demonstration of the equivalence of the antisymmetric sum equation (5) with
the product equation (4). The relevance of Palmer and Tracy’s result (7) to the high-temperature
regime is thatG(2n+1) in equation (5) is a sum of 2n + 1 Pfaffians Pf{fij } of order 2n and, with
fij related tohij by equation (6),

Pf{fij } = cos

(
1
2

2n∑
m=1

φm

)
cosh

(
1
2

2n∑
m=1

γm

)
Pf{hij }. (13)

To verify equation (13) note that a Pfaffian is a sum of products and any particular product
term

∏
fij can be rewritten as

∏
cos1

2(φi + φj )
∏

cosh1
2(γi + γj )

∏
hij =

(
cos

(
1
2

2n∑
m=1

φm

)
−
∑∏

trg 1
2(φi + φj )

)

×
(

cosh

(
1
2

2n∑
m=1

γm

)
−
∑∏

trgh 1
2(γi + γj )

)∏
hij (14)

where trg denotes either sine or cosine and trgh the corresponding hyperbolic functions. The
precise form of the sum of products

∑∏
trg is unimportant except that each term contains

at least two sine factors; similarly for the hyperbolic term. The leading term in equation (14)
gives the equation (13) result we wish to prove; all remaining terms containing

∑∏
trg

and/or
∑∏

trgh vanish when
∏
fij is summed to generate the Pfaffian. The sine and/or

sinh factors play a crucial role in this. The essential point is that these factors, as multipliers
of the correspondinghij , eliminate the denominators inhij . That is, sinh1

2(γi + γj )hij =
sin 1

2(φi − φj ) and sin1
2(φi + φj )hij = sinh 1

2(γi − γj ) which are just the definitions (4)
rewritten. Since there is at least one pair of these denominator-free factors in every product
one can rearrange the Pfaffian sum of correction terms from equation (14) so as to contain only
terms of the form

δPf{fij } = {ĥij ĥkl − ĥikĥj l + ĥil ĥjk}Sijkl (15)

† ForN odd, equation (I.14) is recovered by multiplyingχ̂ (N)kl in equation (12) by− ln ε/π . A formula applicable for

both odd and evenN , namely1χ̂(N)kl (ε) = 2iχ̂ (N)kl (−ε) with χ̂ (N)kl given by equation (12), describes the discontinuity
across the cut which is chosen as real, negativeε.
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whereSijkl is a function that is symmetric ini, j, k, l and ĥij is one of sin1
2(φi − φj ),

sinh 1
2(γi − γj ), 2 cos1

2(φi + φj ) sin 1
2(φi − φj ) = sin(φi)− sin(φj ) or cos(φi)− cos(φj ). In

all cases the sum multiplyingSijkl in equation (15) vanishes and equation (13) is proved.
To complete the proof of equation (4) in the high-temperature phase, I now replace Pf{hij }

in equation (13) by its product form and utilize the connection between the sine product∏
i<j sin 1

2(φi − φj ) and a Vandermonde determinant with elements exp(iφm) to obtain the
alternative expression

Pf{fij } = 1
2

(
2

2n∏
m=1

xm

)n−1(
1 +

2n∏
m=1

xm

)
Det2n(v)

/ ∏
16i<j62n

(1− xixj ). (16)

For the purposes of the subsequent development, the Vandermondianv in equation (16) has been
rearranged into real elementsvi,j = sin(n+1− i)φj for 16 i 6 n andvi,j = cos(i−n−1)φj
for n < i 6 2n, 1 6 j 6 2n. Note thatv contains a row of elements sin(nφj ) but no
corresponding row cos(nφj ). The essence of the remaining argument is to show thatG(2n+1)

is related to a largerv that contains this cos(nφj ) row.
In detail, let the definitions ofv above be extended to includej = 2n+1 but for now leave

v2n+1,j unspecified. The determinant Det2n(v) in (16) can be viewed as the cofactorV2n+1,2n+1

of this larger matrix and more generally the 2n + 1 sum of Pfaffians which definesG(2n+1) in
equation (5) is the column expansion of the determinant Det2n+1(v). Specifically,

G(2n+1) =
(2n+1∏
m=1

xm

)n(2n+1∑
m=1

v2n+1,mV2n+1,m

)/ ∏
16i<j62n+1

(1− xixj )

v2n+1,m = 1
4(2/xm)

n

(
1 +xm/

2n+1∏
i=1

xi

)∏
i 6=m
(1− xixm)

(17)

and of course this definition ofv2n+1,m in equation (17) can be modified by the addition of terms
proportional tovi,m, 16 i 6 2n, with the coefficient of proportionality being any symmetric
function of all 2n+ 1 variables. In view of this one finds, by explicit expansion, the equivalent
expressions

v2n+1,m ≡ 2n−1(xnm + x−nm ) ≡ 2n−1(xm + x−1
m )n ≡ 2n−1(−2 cos(φm))

n

≡ (−2)n cos(nφm) (18)

obtained by dropping any terms that might give rise to cos(n′φm) with n′ < n. The last
equivalence in (18) gives

Det2n+1(v) =
2n+1∑
m=1

v2n+1,mV2n+1,m =
∏

16i<j62n+1

(2 sin 1
2(φi − φj )) (19)

if one again invokes the connection between the sine product and the Vandermondian. With
the result (19), the expression forG(2n+1) in (17) becomes the equation (4) we wished to verify.

In summary, equations (1)–(4) provide a very simple expression for the 2D Ising model
susceptibility. One can speculate that similar simplifications will be found forn-point functions
with n > 2.

4. Corrections to scaling

Aharony and Fisher [8] have shown that in general, independent of the presence or absence of
irrelevant scaling fields, there is a class of corrections to scaling terms that can be eliminated
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by a simple analytic transformation of the conventional thermal and ordering fields. In the
case of the square lattice Ising model I will choose as the thermal and ordering fields

τ = 1
2(s
−1− s) h = βH (20)

where the magnetic fieldH has been normalized such that the magnetizationM = −∂F/∂H
is just the mean spin with its maximum absolute value chosen as unity. The use ofτ in
equation (20) rather thant = T/Tc− 1 simplifies the subsequent formulae but is otherwise of
no significance. It is worth noting that at linear order,τ = 2Kc

√
2t, 2Kc = ln(1 +

√
2). The

nonlinear scaling fields are

gτ = τg(0)τ + πE0/(4Kc

√
2)h2g(2)τ + O(h4) gh = hg(1)h + O(h3) (21)

where theg(n)τ andg(n)h are functions ofτ normalized to unity atτ = 0. On the assumption that
irrelevant scaling fields are not present in the square lattice Ising model, the ‘optimal’g(0)τ is
determined by the condition that the singular part of the free energy at zero field scales exactly
as(gτ )2 ln |gτ |. A short calculation, given the Onsager solution, then yields

g(0)τ =
[ ∫ 1

0
dx F( 1

2,
1
2; 1;−xτ 2)/(1 +xτ 2)1/2

]1/2

= 1− 3τ 2/16 + 137τ 4/1536− · · · (22)

whereF is the hypergeometric function. Similarly, the defining equation for the ‘optimal’g
(1)
h

is the scaling of the magnetization in zero field, namelyM0 = (1−s−4)1/8 = g(1)h (−4τg(0)τ )
1/8,

from which

g
(1)
h = [(1 + τ 2)1/2[(1 + τ 2)1/2 + τ ]2/g(0)τ ]1/8

= 1 + τ/4 + 15τ 2/128− 9τ 3/512− 4333τ 4/98 304 +· · · (23)

follows. The singular part of the zero-field susceptibility is

β−1χ± = C0±(2Kc

√
2)7/4|τ |−7/4(g

(1)
h )

2/(g(0)τ )
7/4 +E0/(2Kc

√
2)τ ln |τ |g(0)τ g(2)τ (24)

whereE0 ≈ 0.040 325 5003 [17] and 40-digit accurate values forC0± can be found in I. The
presence of the second term in equation (24) was a significant prediction of the nonlinear
scaling field analysis by Aharony and Fisher [8], but one should note that whileg(0)τ andg(1)h
as series inτ have finite radii of convergence,g(2)τ is at best asymptotic because|s| = 1 is a
natural boundary forχ±. The formula (24) has been verified numerically through orderτ 5/4

by Gartenhaus and McCullough [9], but nothing beyondg(2)τ = 1 could be said because of the
limited length of the series available to them.

While equation (24) is a definition of the functiong(2)τ , the fact that it must apply both above
and below the critical point allows a check of the Aharony–Fisher analysis. More accurately,
a failure of equation (24) indicates the presence of irrelevant scaling fields.

For temperaturesT < Tc I test equation (24) by first rewriting each term as a series in
ω = 1− s−2, a definition which combined with equation (20) gives the transformations

τ = − 1
2ω/(1− ω)1/2 ω = −2τ [(1 + τ 2)

1/2
+ τ ]. (25)

The series expansion of equation (24) inω is now truncated at some moderate order, re-
expanded in series

∑
f2ms

−2m, and finally used to form the difference series
∑
g2ms

−2m =∑
(K2m − f2m)s

−2m where theK2m are the known coefficients ofβ−1χ− from appendix A.
However, before the difference coefficients can be sensibly interpreted one must reduce the
effect of the unphysical singularities on the circle|s−2| = 1.

The most important singularity is ats−2 = −1. In the vicinity of this point the
dominant contribution toβ−1χ− from χ(2) is 21/4/(6π)/(1 + s−2)3/4 and from χ(4) is



1700 Addendum

−21/4(ln(1+s−2)+3.067 584)(2G−1)/(16π3)/(1+s−2)3/4 whereG = 0.915. . . is Catalan’s
constant and the constant additive to the logarithm is a numerical estimate. These two terms
by themselves would imply an asymptotic contribution to the coefficientK2m of s−2m in the
series forβ−1χ− of magnitude

K2m = (−1)mm−1/421/4/0( 3
4)(1/(6π) + (ln(m)− ψ( 3

4)− 3.067 584)(2G− 1)/(16π3))

≈ (−1)mm−1/4(0.048 259 000+ 0.001 627 3895 ln(m)). (26)

The complete contribution toβ−1χ− from allχ(N) is close to this value. I find almost complete
elimination of thes−2 = −1 singularity effects is possible by a combination of the subtraction

K2m→ K2m − (−1)mm−1/4(0.048 181 5010+ 0.001 641 555 38ln(m)) (27)

and the reduction in amplitude of higher-order terms by repeated use of a smoothing operation
Da as described in I, namely the averagingDagn = (gn−1 + gn+1)/2. For example,
n15/4D3

an
3D3

an
13/4gn will eliminate termsg2m proportional to(−1)mm−p ln(c ·m), p = 5

4,
9
4

or 13
4 andc any constant, and convert(−1)mm−17/4 ln(c · m) to O(m−1/4 ln(c · m)), while at

the same time enhancing any non-oscillatory terms associated with thes−1 = 1 singularity by
a factor ofn10. It is worth noting that because of the clear numerical evidence of a confluent
logarithmic term in equation (27), the naive scaling at the points−2 = −1 reported previously
[18, 19] is incorrect.

The only complex singularities of any consequence are four symmetry-related points
s−1 = ± exp(±iπ/3) arising fromχ̂ (4). The integrand in equation (2) is sufficiently simple
that with algebraic packages such asMaple† one can go beyond the leading contribution given
in equation (12). The first few singular terms nears−1 = exp(iπ/3) written in terms of
ε = 1− s−1 exp(−iπ/3) are

χ̂ (4) = −31/41536/(5005π)(1 + i)ε13/2

[
1 +

(
13

4
+

5

2
√

3
i

)
ε +

(
1265

1632
+

25
√

3

8
i

)
ε2

−
(

5365

384
− 53 321

20 672
√

3
i

)
ε3 + · · ·

]
. (28)

The dominant effect of the terms in equation (28), combined with their symmetry-related
equivalents, can be eliminated by the subtraction

K2m→ K2m − 33/881/(8π3/2)m−15/2

×
[(

1 +
15

8
m−1− 9575

128
m−2 − 185 155

1024
m−3 + · · ·

)
sin
(

2
3mπ + 5

24π
)

+
5
√

3

2

(
m−1 +

17

8
m−2 − 17 571

128
m−3 + · · ·

)
cos
(

2
3mπ + 5

24π
)]

(29)

while higher-order terms can be reduced in magnitude by a smoothingDbgn = (gn−2 + gn +
gn+2)/3.

I obtain estimates for the unknown coefficients inτg(0)τ g
(2)
τ in equation (24) by a least-

squares procedure that minimizes the residual

Rn = n−5/2D2
bn

25/4D3
an

3D3
an

13/4gn. (30)

† Maple V software available from Waterloo Maple Software, 160 Columbia Street West, Waterloo, Ontario, Canada
N2L 3L3.
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A particular fit, following the subtractions given in equations (27) and (29) and in which the
first (known) term in equation (24) has been truncated atω53/4 and the second (unknown) term
atω10 ln |ω|, is

τ ln |τ |g(0)τ g(2)τ ≈ − 1
2ω ln |ω|(1 + 0.250 060 119 086 839ω + 0.107 401 099 2494ω2

+0.137 795 668 44ω3 + 0.503 783 9523ω4 + 1.565 146 753ω5

+3.295 256 38ω6 + 4.272 8663ω7 + 3.007 152ω8 + 0.863 27ω9). (31)

As can be explicitly verified, this fit leaves the residuals defined in equation (30) satisfying
|Rn| < 0.1 on the fitting interval 746 n 6 104. By comparing different truncations and
slightly different procedures, I conclude that the underlined digits in equations (27) and (31)
are uncertain; however, these digits are highly correlated and must be kept when calculating
the residual†. Because of this correlation it is also necessary to keep high-order terms in any fit
such as those in equation (31) which apparently are of no significance, yet if forced to vanish
would contaminate the low-order terms of interest. In principle, another reason for the lack of
significance of the higher-order terms in equation (31) is the limited accuracy with which the
amplitudeE0 in equation (24) is known. This, however, is less important than the uncertainties
in the current fitting procedure and does not affect any of the conclusions in this paper.

The contributiong(2)τ to the nonlinear thermal scaling field (21) deduced from equation (31)
is

g(2)τ ≈ 1 + 0.499 880τ + 0.1169τ 2 − 0.72τ 3 + 5τ 4 − · · · (T < Tc) (32)

and this is to be compared to the estimate that is obtained from the series forT > Tc as
discussed below.

For theT > Tc analysis I use the ferromagnetic variableωf = 1− s which is related to
the thermal fieldτ defined in equation (20) by

τ = ωf (1− ωf /2)/(1− ωf ) ωf = 2τ/(1 + τ + (1 + τ 2)1/2). (33)

Otherwise the analysis parallels that forT < Tc. In particular, the series expansion of
equation (24), now in terms ofωf , is truncated at some moderate order, re-expanded in
series

∑
fns

n, and used to form the difference series
∑
gns

n = ∑(Kn − fn)sn with Kn the
coefficients ofβ−1χ+. Contributions to the series ins coming from unphysical singularities
on the circle|s| = 1 are reduced as described forT < Tc. One new situation arises because
of the antiferromagnetic singularity ats = −1.

This singular point has been treated in detail by Burnett and Gartenhaus [20], who show
that in the absence of irrelevant variables, the singular part of the susceptibility can be written
as

β−1χa = F0/(2Kc

√
2)ωa ln |ωa|φa(ωa) ωa = 1 + s (34)

whereF0 = −0.193 595 186 268 2647 [21] andφa(ωa) is an analytic function. They also
provide the numerical estimate

φa ≈ 1 + 0.999 81(6)ωa + 0.903(3)ω2
a (35)

and it is easy to confirm their result by generalizing the least-squares fitting procedure to
include both ferromagnetic and antiferromagnetic scaling polynomials. A particular fit is

φa ≈ 1 + 0.999 987 719 9992ωa + 0.914 979 169 25ω2
a + 1.359 885 44ω3

a + 4.419 735ω4
a

+15.9656ω5
a + 35.632ω6

a + 31.31ω7
a (36)

† Because of the overall factor ofn10 in the definition ofRn in equation (30), small terms ingn are greatly magnified.
For example, a fractional error of as little as 10−20 in the series coefficientK100 is significant.
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where underlined digits are uncertain, as deduced from a comparison of different fits, but have
been kept because of correlations between the terms and also with terms in the ferromagnetic
polynomial in equation (43) below. The coefficient ofωa can plausibly be assumed to be unity;
if this is imposed then a typical fit becomes

φa ≈ 1 +ωa + 0.917 058 101 37ω2
a + 1.468 081 710ω3

a + 6.782 3520ω4
a + 39.737 890ω5

a

+143.076 89ω6
a + 205.2129ω7

a. (37)

The rapid growth of the coefficients ofωna with order in equations (36) and (37) is somewhat
of a surprise since the nearest known unphysical singularities (of substantial amplitude) to
s = −1 are at a distanced = | exp(±2π i/3) + 1| = 1. On the other hand, this behaviour and
the fact that the new estimates ofφa have drifted beyond the error estimates of equation (35) are
what would be expected if the susceptibility is not of the assumed form of equation (34). Thus
the current results suggest the presence of irrelevant variables at the antiferromagnetic point
but I have not pursued this further. The coefficients in equations (36) and (37) should simply be
viewed as ‘effective’ constants that serve the purpose of reducing the odd–even oscillations in
the susceptibility series to the point where a reasonable analysis of the ferromagnetic singularity
is possible.

Some useful properties of the important unphysical singularities confounding the
ferromagnetic point analysis are as follows. In the vicinity ofs = ±i, the dominant singular
contribution toβ−1χ+ from χ(1) is 2−3/4s(1 + s2)1/4 and fromχ(3) is 2−7/4((2s − π) ln(1 +
s2) + 5.636 24s − 7.692 01)/π2(1 + s2)1/4 with the constants additive to the logarithm again
a numerical estimate. These two terms give, as a leading asymptotic contribution to the
coefficient ofsn in β−1χ+,

Kn = −n−5/42−3/2/0( 3
4)[(1− (ln(n/2)− ψ( 3

4)− 4− 5.636 24/2)/π2) sin(πn/2)

+((ln(n/2)− ψ( 3
4)− 4− 7.692 01/π)/(2π)) cos(πn/2)]. (38)

If the leading terms fromχ(2n+1), n > 1, have the same structure then the smoothing operation
D3
an

3D3
an

13/4gn, Dagn = (gn−1 + gn+1)/2, used in theT < Tc analysis is appropriate here
also.

The remaining important complex singularities are those fromχ̂ (3). Nears = exp(2iπ/3),
with ε = 1− s exp(−2iπ/3),

χ̂ (3) = 8/(3π)iε3 ln(ε)

[
1 +

(
3

2
− 5

2
√

3
i

)
ε −

(
5√
3

i

)
ε2 −

(
5

2
+

41

6
√

3
i

)
ε3

−
(

55

9
+

8√
3

i

)
ε4 −

(
98

9
+

44

3
√

3
i

)
ε5 + · · ·

]
(39)

and nears = (1 + i
√

15)/4, with ε = 1− s(1− i
√

15)/4,

χ̂ (3) = 5
√

5/(3π)iε3 ln(ε)

[
1 +

(
3

2
+

47

8
√

15
i

)
ε −

(
227

40
− 47

4
√

15
i

)
ε2

−
(

267

16
+

133 471

1920
√

15
i

)
ε3 +

(
949 957

18 432
− 50 757

√
3

640
√

5
i

)
ε4

+

(
8867 299

36 864
+

75 566 527

122 880
√

15
i

)
ε5 + · · ·

]
. (40)
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The useful series subtractions generated by these singularities and their corresponding complex
conjugate points are

Kn→ Kn − 31/8 32

π
n−4

[(
1− 2n−1− 35

3
n−2 + 40n−3− 7532

3
n−4 +

29 554

3
n−5 + · · ·

)
× cos

(
2
3nπ + 5

24π
)

+
4√
3

(
2n−1− 5n−2 + 90n−3

−595

2
n−4 +

15 176

3
n−5 + · · ·

)
sin
(

2
3nπ + 5

24π
)]

−151/8 10
√

10

π
n−4

[(
1− 2n−1− 1009

12
n−2 +

1029

4
n−3 +

35 211 729

1280
n−4

−106 792 147

960
n−5 + · · ·

)
cos
((
n + 1

2

)
cos−1( 1

4)− 3
8π
)

− 19

4
√

15

(
2n−1− 5n−2 − 3721

4
n−3 +

26 187

8
n−4

+
5087 026 973

9120
n−5 + · · ·

)
sin
((
n + 1

2

)
cos−1( 1

4)− 3
8π
)]
. (41)

The presence of singularities ats = ±i near to those ats = exp(±2iπ/3)ands = (1±i
√

15)/4
makes the subtraction (41) rather less effective than the corresponding subtraction (29) for
T < Tc and so a further smoothing is essential. Define the operatorDc as the product of
the mappingsgn → (gn−1 + gn + gn+1)/3 andgn → (2gn−1 − gn + 2gn+1)/3. Then a useful
least-squares procedure can be based on the residual

Rn = n−2D2
cn

19/4D3
an

3D3
an

13/4gn. (42)

A particular fit, following the subtraction of the first term in equation (24) through O(ω
53/4
f )

and that indicated in equation (41), is the antiferromagnetic scaling function in equation (36)
and

τ ln |τ |g(0)τ g(2)τ ≈ ωf ln |ωf |(1 + 0.994 476 313 1077ωf + 1.253 033 259 05ω2
f

+7.192 851 433ω3
f + 89.113 1162ω4

f + 661.227 86ω5
f + 2371.200ω6

f

+3177.19ω7
f ). (43)

The resulting residualsRn of equation (42) are|Rn| < 1.3 on the fitting interval 766 n 6 106.
The estimatedg(2)τ from (43) is

g(2)τ ≈ 1 + 0.4945τ + 0.45τ 2 + 6τ 3 + · · · (T > Tc) (44)

which is different from equation (32) deduced forT < Tc. The second term in each estimate
is close to1

2τ but the differences are significant. If either fit is forced to accommodate this
value, or the fits are forced to a common linearτ coefficient, the residuals increase by more
than two orders of magnitude and no sensible result is obtained. It is the observation that no
reasonablecommonlinearτ coefficient can be found which is the basis for my conclusion that
terms from irrelevant variables must be present in the susceptibility. Stated another way, it
is not possible to preserve the scaling field hypothesis in its simplest form in which one both
maintains the analyticity of the unknowng(2)τ and at the same time keeps without change the
knowng(0)τ andg(1)h .
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It has by no means been determined that the corrections to scaling from irrelevant variables
is of the formτ 2 ln |τ | indicated by equations (32) and (44). In fact, because the coefficients of
ωnf in equation (43) are growing so rapidly with order it is almost certain that the corrections

are not of this form. As a simple test of this idea I have assumedg(2)τ = 1 + 1
2τ + · · · but

allowed a modification of the amplitude of the coefficient ofτ 4 in g(1)h . A particular fit in
this case with−4333τ 4/98 304 in equation (23) replaced by−(4333 + 127.4)τ 4/98 304 is the
antiferromagnetic equation (37) and

τ ln |τ |g(0)τ g(2)τ ≈ ωf ln |ωf |(1 +ωf + 0.955 574 346 23ω2
f + 0.210 333 607ω3

f

−6.794 8903ω4
f − 39.717 263ω5

f − 110.770 73ω6
f − 119.8342ω7

f . (45)

The two fits are comparable as determined by the magnitude of the residualsRn, but
the more reasonable growth in coefficients in equation (45) suggests that it is the more
plausible representation. A very similar replacement in the low-temperature case, namely
−4333τ 4/98 304→ −(4333 + 108.5)τ 4/98 304 in equation (23), allowsg(2)τ = 1 + 1

2τ + · · ·
and a fit with residues comparable to those obtained for equation (31).

In conclusion, no reasonable fit of the susceptibility series is possible with the nonlinear
scaling field equation (24) in the absence of irrelevant scaling variables. The irrelevant variables
could contribute already at orderτ 2 ln |τ |, making the determination ofg(2)τ beyond the trivial
g(2)τ = 1 ambiguous. A more plausible situation is that the irrelevant variables first contribute
at orderτ 9/4 in which caseg(2)τ = 1 + 1

2τ + · · · is very likely. Whether the irrelevant variables
might be incorporated into scaling field corrections of orderτ 4 ln |τ | as suggested by Barma
and Fisher [10] in their generalized scaling field proposal is not yet clear. Certainly the additive
constants in the amplitude shifts 4333→ 4333 + 127.4 and 4333→ 4333 + 108.5 discussed
in the previous paragraph might very well be approximations toA± ln |B±τ | with A±, B±
constants applicable forT ≷ Tc. However, what needs to be investigated carefully, but is
beyond the scope of the present paper, is whether thesameconstants enter in both temperature
regimes.
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Appendix A

Series forχ(N) can be generated numerically from equation (2) exactly as in I except that
with the use of equation (4) there is no need to keep intermediate series of a length longer
than the final output series. There is also an improvement possible due to the explicitN !
permutation symmetry that can be incorporated without difficulty. The number of integration
points exclusive of symmetry considerations is unchanged. A rough timing estimate for an
ordersn (ors−n) calculation, based on the observation that≈8N series multiplications/divisions
are required in the innermost do-loop of the (N − 1)-dimensional integration program, is

T ≈ 8Nτ((n−N2)2/2)((n + 2−N(N − 1))N−1/N !) (A1, I.52)

with τ the time for a scalar multiply.
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Series for the low-temperature phase are as follows. ForN = 2, the analytical formula

χ(2) = ((1 + s−4)E(s−2)− (1− s−4)K(s−2))/(3π(1− s−2)(1− s−4)3/4) (A2)

whereE(k) andK(k) are complete elliptic integrals of modulusk, is given in [2, 4] and can
be checked from equations (1)–(4). ForN = 4,

χ(4) = 16/(2s)16[1, 0, 34, 4, 816, 184, 17 032, 5528, 330 410, 137 616, 6133 502, 3080 684,

110 614 188, 64 440 400, 1955 049 704, 1286 396 624, 3404 9564 812,

24 823 080 048, 586 445 963 472, 466 880 805 208, 10 013 318 250 144,

8607 752 182 240, 169 795 200 652 544, 156 191 842 299 264,

2863 066 302 852 100, 2797 674 466 067 936, 48 052 805 813 499 830,

49 576 416 445 259 516, 803 364 601 771 139 428, 870 640 463 287 642 624,

13 386 533 329 957 780 008, 15 173 111 683 909 087 968,

222 427 274 992 084 420 564, 262 694 289 615 880 732 224,

3686 688 145 743 255 403 920, 4522 158 955 326 355 312 064,

60 974 369 623 968 898 880 496, 77 458 850 042 678 600 386 272,

1006 541 602 369 530 330 457 600, 1320 942 889 551 199 319 187 936,

16 587 553 491 378 418 040 825 784, 22 438 855 031 194 992 135 981 728,

272 946 365 719 021 571 144 410 848, 379 842 400 422 024 471 931 467 096,

4485 213 787 148 282 612 479 813 936,

6409 848 064 169 377 405 155 348 000,

73 613 386 315 722 756 079 612 977 472,

107 861 635 250 940 020 997 598 333 376,

1206 833 646 078 540 650 844 079 921 776,

1810 408 317 297 117 041 825 222 831 488] + O(1/s116)

where everynth term in square brackets is understood to be divided by(4s2)n−1. In the same
notation,

χ(6) = 64/(2s)36[1, 0, 70, 4, 2908, 324, 93 600, 15 236, 2582 208, 545 744, 64 243 876,

16 530 604, 1484 638 788, 446 674 112, 32 470 021 016, 11 111 354 108,

680 588 629 015, 259 652 450 776, 13 793 531 185 122, 5778 875 313 592,

272 056 612 645 156, 123 700 557 739 324, 5247 322 577 116 088,

2565 114 296 089 748, 99 339 631 383 591 880, 51 810 149 151 875 664,

1851 287 082 355 848 704, 1023 589 372 712 797 784,

34 040 288 011 272 234 608, 19 846 370 622 152 535 036,

618 712 428 348 277 070 244, 378 647 369 952 195 878 300,

11 133 211 679 566 279 650 584, 7124 004 145 333 331 471 064,
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198 578 882 997 030 212 999 128, 132 409 312 519 446 049 990 112,

3514 642 813 193 500 314 740 220, 2434 766 766 257 642 423 738 800,

61 779 931 915 842 789 393 162 552,

44 348 275 917 143 635 236 792 348] + O(1/s116)

χ(8) = 256/(2s)64[1, 0, 126, 0, 8760, 4, 444 740, 584, 18 429 842, 46 440, 661 181 352,

2666 700, 21 284 489 876, 123 775 920, 629 590 702 560, 4931 432 616,

17 399 645 554 608, 174 978 276 504, 454 782 728 642 990, 5666 937 855 136,

11 346 176 762 954 496, 170 457 295 696 784, 272 130 763 033 866 776,

4823 358 665 721 664, 6310 173 702 555 839 080,

129 653 155 664 625 380] + O(1/s116)

χ(10) = 1024/(2s)100[1, 0, 198, 0, 20 888, 4, 1560 492, 868] + O(1/s116).

As a check of transcription errors, note the sum of all coefficients in each square brackets group-
ing is 3210 306 336 610 319 288 037 819 026 449 forχ(4), 112 427 917 104 490 865 032 248 448
for χ(6), 6728 776 294 882 212 939 forχ(8) and 1582 451 forχ(10).

Series coefficients in the high-temperature phase to supplement those in I are

χ(3) = 4(s/2)8[1, . . . ,170 978 340 515 589 313 718 120, 335 060 480 205 265 606 068 840,

684 602 608 103 977 440 609 332, 1381 706 579 997 262 133 939 892,

2828 608 366 958 598 297 227 468, 5557 101 341 494 935 415 636 732,

11 338 147 111 979 382 845 549 828, 22 866 103 814 018 400 451 961 844,

46 732 824 738 185 549 695 640 488, 92 008 743 010 682 180 233 831 048,

187 483 755 779 768 696 740 591 852, 377 868 579 896 643 784 209 024 172,

771 120 554 264 877 537 844 229 224, 1521 009 770 708 608 999 364 253 584,

3095 812 279 834 146 303 984 008 100,

6236 036 570 504 302 100 769 258 980,

12 708 953 203 092 717 183 163 924 408,

25 108 690 989 496 635 685 935 780 792,

51 053 020 094 654 748 250 340 561 852,

102 787 677 664 076 848 815 125 060 924,

209 231 893 932 355 980 743 629 040 196,

413 953 956 242 443 810 772 751 461 844,

840 904 784 134 290 838 248 791 930 540,

1692 329 718 083 472 057 667 718 617 852,

3441 166 987 124 800 333 795 987 767 384,

6816 488 155 523 045 803 794 701 512 312,
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13 835 519 566 242 086 716 131 210 779 876,

27 833 775 136 584 542 649 229 756 844 196,

56 542 048 989 347 839 083 415 540 355 048,

112 123 381 028 021 896 618 604 264 970 184,

227 404 951 925 946 698 461 028 681 867 708,

457 333 093 960 292 542 055 342 125 777 916,

928 229 378 909 233 592 378 539 505 465 320] + O(s117)

χ(5) = 16(s/2)24[1, . . . ,51 618 661 720 552 233 864, 34 914 520 911 575 089 428,

36 052 409 051 671 379 304, 79 055 035 337 786 390 400,

867 542 726 971 353 662 636, 609 243 496 914 657 871 536,

653 488 652 464 102 895 964, 1418 334 964 232 666 691 976,

14 518 616 908 164 075 938 428, 10 556 972 362 883 121 049 256,

11 719 867 457 568 418 427 552, 25 213 740 500 370 016 547 184,

242 084 144 571 191 426 200 055, 181 825 689 673 000 784 234 256,

208 261 303 624 861 442 714 088, 444 642 172 195 199 815 656 320,

4023 699 374 843 213 608 022 380, 3115 093 947 491 274 383 904 944,

3671 185 631 869 949 162 158 912, 7786 107 557 833 567 594 472 140,

66 692 726 260 805 066 384 497 404, 53 120 715 346 208 833 152 690 176,

64 259 981 130 138 513 331 246 464, 135 494 241 796 199 518 425 986 968,

1102 738 110 024 561 838 992 358 444, 902 123 340 477 352 211 230 691 464,

1117 808 998 097 154 782 047 821 804, 2344 834 401 280 243 812 497 116 256,

18 194 138 527 651 859 775 499 676 748,

15 264 191 780 788 899 772 577 124 824,

19 336 984 898 789 052 467 071 047 320,

40 378 538 454 184 718 190 567 490 576,

299 613 485 835 811 943 745 832 462 524] + O(s117)

χ(7) = 64(s/2)48[1, . . . ,81 610 343 951 508, 1466 844 589 636, 663 120 891 668,

29 321 249 606 976, 1797 514 276 437 711, 38 392 007 711 240,

19 244 414 195 012, 711 042 350 579 476, 38 364 678 187 366 272,

954 028 075 305 788, 522 351 335 517 580, 16 536 532 709 907 144,

797 298 354 953 513 700, 22 707 413 725 214 080, 13 422 042 208 702 728,

371 298 047 779 473 440, 16 196 037 171 229 162 872,

521 202 484 651 584 116, 329 485 078 154 416 456, 8091 036 110 069 443 644,
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322 583 813 599 182 464 183, 11 598 350 872 008 924 200,

7781 835 176 201 516 652, 171 833 490 340 034 513 148,

6315 746 844 925 803 912 700, 251 300 917 168 878 143 316,

177 820 458 618 682 617 680, 3568 703 069 836 131 909 620,

121 805 723 084 988 763 487 569, 5319 976 394 951 585 446 820,

3948 970 248 129 057 475 872, 72 681 911 457 169 995 752 756,

2318 112 680 138 856 429 317 460] + O(s117)

χ(9) = 256(s/2)80[1, 0, 0, 0, 160, 0, 0, 0, 13 839, 4, 0, 4, 858 704, 708, 0, 728, 42 821 009,

67 252, 44, 70 976, 1823 591 632, 4553 260, 8552, 4924 124, 68 849 090 530,

246 325 612, 886 592, 272 571 000, 2362 955 813 664, 11 321 647 420,

65 153 952, 12 801 733 500, 75 046 023 962 279, 459 187 169 680,

3806 965 664, 529 929 285 744, 2234 769 195 868 396] + O(s117).

The sum of the coefficients listed in each square brackets grouping above is

1 + · · · + 1836 920 256 588 048 308 225 813 577 267 856 forχ(3)

1 + · · · + 398 594 150 670 908 937 375 825 751 595 forχ(5)

1 + · · · + 2532 723 031 648 180 443 053 023 forχ(7)

and

2313 266 533 385 030 forχ(9).

Appendix B

The transfer matrix spectral formalism was developed by Abraham in a series of papers
culminating in a description of pair correlations [22] and the generaln-point function [23].
However, the clearest statement of the final pair formulae, in the high-temperature phase
s < 1, appears in [15] and I will use this reference exclusively, with equations from it given
as (**DBA). The equivalence of the susceptibility derived by Abraham and that discussed in
I and this paper will be established if one can show

|Fx((eiφ)2n+1)|2 ?= (1− s4)1/4s−1(G(2n+1))2/

2n+1∏
i=1

sinhγi (B1)

whereG is the antisymmetric sum (5) andFx is defined by equations (22)–(27DBA). To begin,
note that

sinhγ = ((s + s−1− cosφ)2 − 1)
1/2

= ((A− z)(B−1− z)(A− z−1)(B−1− z−1)B/(4A))
1/2

(B2)

wherez = exp(iφ) and, fors < 1, theA andB−1 are the branch points outside the unit circle
|z| = 1; explicitly

A = coth(K) exp(2K) = s−1(s + (1 + s2)1/2)(1 + (1 + s2)1/2)

B = tanh(K) exp(2K) = s(s + (1 + s2)1/2)/(1 + (1 + s2)1/2)
(B3)
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as given in (27DBA). The Onsager hyperbolic function can be factored as

sinhγ = f (z)f (z−1)/(4A/B)1/2 1/ sinhγ = (4A/B)1/2g(z)g(z−1) (B4)

with f (z) = ((A−z)(B−1−z))1/2 = 1/g(z−1) given in (25)–(26DBA). It is to be understood
that all square roots are positive real forz = −1.

With these preliminary results in hand, one can easily show that the contraction function
(25DBA) can be rewritten as

f−(zi, zj ) = (4A/B)1/2g(zi)g(zj )(sinhγi − sinhγj )zizj /(zizj − 1) (B5)

while the generator (22DBA) factors into

Fx((z)2n+1) = −(1− s4)1/8(4A/B)n/2
2n+1∏
i=1

g(zi)

2n+1∑
1

Pf{fij (DBA)} (B6)

with the Pfaffian elementsfij (DBA) = (sinhγi − sinhγj )zizj /(zizj − 1) from (B5). The
Pfaffian sum in (B6) is exactly that in equation (5) except for the difference in elements. In
view of the fact that only|Fx |2 appears in (B1) one can modify the Abraham elementfij (DBA)
to

fij (DBA) = i(sinhγi − sinhγj )zizj /(zizj − 1)

≡ i 1
2(sinhγi − sinhγj )(zizj + 1)/(zizj − 1)

= 1
2(sinhγi − sinhγj ) cos1

2(φi + φj )/ sin 1
2(φi + φj ) = fij . (B7)

The equivalence (≡) in (B7) follows because the difference of the first two lines is the
function i12(sinhγi − sinhγj ) which vanishes in any antisymmetric sum such as (5) that
cycles over all indices; this is the cumulant property discussed in I and can be proved
inductively. The final equality tofij of equation (6) follows trivially from the identity
sinhγi − sinhγj = 2 cosh1

2(γi + γj ) sinh 1
2(γi − γj ). On taking the square of (B6) and

using the factorization of 1/ sinhγ in (B4) one finds that

|Fx((eiφ)2n+1)|2 = (1− s4)1/4(B/(4A))1/2(G(2n+1))2
/ 2n+1∏

i=1

sinhγi (B8)

so that (B1) is verifiedexceptfor a factors(B/(4A))1/2 = sinh2(K). I have not traced the
source of the sinh(K) error inFx .

For a comparison at low temperatures,s > 1, I refer to [22, 23]. The equivalence that can
be verified is

|Fx((eiφ)2n)|2 = (1− s−4)1/4(Pf{hij })2
/ 2n∏

i=1

sinhγi (B9)

where thehij are the elements in equation (4), while the left-hand side of (B9) is defined by

Fx((eiφ)2n) = (1− s−4)1/8Pf{f−(zi, zj )}
f−(zi, zj ) = (f (zi)/f (z−1

j )− f (zj )/f (z−1
i ))zizj /(zizj − 1)

f (z) = ((A− z)/(B − z))1/2.
(B10)

A andB are still given by (B3); the difference with the high-temperature case is that nowB is
the branch point of sinhγ that is outside the circle|z| = 1. This in turn modifies the function
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f (z) that plays a role in the Wiener–Hopf factorization in the spectral approach. Algebraic
reduction of the Pfaffian elementsf−(zi, zj ) with the help of the identities

((A− z)(A− z−1))
1/2 = 2

√
A cosh1

2γ

((B − z)(B − z−1))
1/2 = 2

√
B sinh 1

2γ
(B11)

leads to

f−(zi, zj ) = i exp 1
2i(φi + φj )hij /((A− z−1

i )(A− z−1
j )(B − zi)(B − zj )/(4AB))1/2.

(B12)

Further simplification is possible because only|Fx|2 enters into the equivalence equation (B9).
For example, the factor exp12i(φi + φj ) in (B12), which contributes to a phase exp1

2i
∑2n

1 φi
common to every term in the Pfaffian in (B10), can be dropped. Also the denominator in (B12)
can be replaced by its absolute value on the circle|z| = 1; one finally obtains

f−(zi, zj ) ≡ hij /(sinhγi sinhγj )
1/2 (B13)

and (B9) is proved.

Appendix C

The formulae given below enable one to transform the elliptic representation of Yamada [4–
6] to trigonometric/hyperbolic form. They are essentially the Onsager [7] and Yang [14]
transformations but it is convenient to have them collected together. Also, this listing can be
used to eliminate a potential source of confusion as a result of the differences in the convention
adopted for the argument of the Jacobi functions snu, cnu, dnu, etc. In the following it is
understood that a full period of snu and cnu on the real axis is 06 u 6 4K (Yamada has
used both this definition ofu andu such that sn has period 06 u 6 2K).

The starting point of the Onsager/Yang transformations can be taken to be the functional
relations

exp(± 1
2iφ − 1

2γ ) =
√
k sn 1

2(u± ia) sn ia = i/
√
k (C1)

with k the modulus of the complete elliptic integralK and given byk = s2 (k = 1/s2) for
T > Tc (T < Tc). The parametera is real; the pointu = 0 is φ = π ; the pointφ = 0 is
u = 2K. From (C1) one can derive

z = exp(iφ) = sn 1
2(u + ia)/ sn 1

2(u− ia) = k sn 1
2(u + ia) sn 1

2(u− ia + 2iK ′)

= −(cnu− i(1 + k)1/2 snu)/(dnu + i(k + k2)
1/2

snu)

x = exp(−γ ) = k sn 1
2(u + ia) sn 1

2(u− ia) = ((k + k2)
1/2 − k cnu)/((1 + k)1/2 + dnu)

(C2)

and from these in turn

cosφ = (
√
k dnu− cnu)/D sinφ = snu(1− k)(1 + k)1/2/D

coshγ = (dnu/
√
k − k cnu)/D y−1 = sinhγ = (1− k)(1 + 1/k)1/2/D

dφ/du = −(1− k)(1 + k)1/2/D D = dnu−
√
k cnu

(C3)

which are some of the formulae given by Onsager [7]. The necessary identity coshγ +cosφ =√
k + 1/

√
k is clearly satisfied. The integral transformation is∫ π

−π
dφ y . . . =

√
k

∫ 4K

0
du . . . (C4)
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and

hij = sin 1
2(φi − φj )/ sinh 1

2(γi + γj ) = −
√
k sn 1

2(ui − uj ). (C5)

All equations (C2)–(C5) follow from (C1) and standard identities for the Jacobi elliptic
functions [24]. Many other forms of the identities can be given; it is not easy to spot
equivalences and indeed even to verify, let alone derive, the formulae above I have found
algebraic packages such asMapleuseful.
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